78.4=4.9*t^2

Simple and best practice solution for 78.4=4.9*t^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 78.4=4.9*t^2 equation:



78.4=4.9t^2
We move all terms to the left:
78.4-(4.9t^2)=0
We get rid of parentheses
-4.9t^2+78.4=0
a = -4.9; b = 0; c = +78.4;
Δ = b2-4ac
Δ = 02-4·(-4.9)·78.4
Δ = 1536.64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{1536.64}}{2*-4.9}=\frac{0-\sqrt{1536.64}}{-9.8} =-\frac{\sqrt{}}{-9.8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{1536.64}}{2*-4.9}=\frac{0+\sqrt{1536.64}}{-9.8} =\frac{\sqrt{}}{-9.8} $

See similar equations:

| (x3+x3)=0 | | 78.4=4.9*t² | | 78.4=4.9*t | | 5m52m=125 | | x,5x+7=37 | | 8x+5=6x5 | | 90x-x^2=180 | | m/5m52m=125 | | y=175(1.028)^(5) | | x(13)=15.81(1.047)^13 | | 3a*7=25 | | x/0.2=12 | | (1.20x1.51)/(.82)= | | 6x^2+5=26 | | y=12(1+0.5)^(5) | | -2m+4=-16 | | 2(y-3)–3(y-2)=6 | | (2y-9)=^2 | | C(2)=25p | | 3/5(x)+3=x-1 | | 1.5x=210 | | –9g+7=–8g | | 2x-4+6x=2(4x-2) | | (2j+3/3)=(3j-1/6) | | -10x-12=-8x+8 | | x×3=45 | | 2x-9+13=180 | | a=10,000(1.05)^2 | | -18=3–4x–8 | | X+52x-7=180 | | .-18=3–4x–8 | | 7x+15=4x-18 |

Equations solver categories